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A B S T R A C T

Logging assists in monitoring events that transpire during the execution of software. Previous research has
highlighted the challenges confronted by developers when it comes to logging, including dilemmas such
as where to log, what data to record, and which log level to employ (e.g., info, fatal). In this context, we
introduced LANCE, an approach rooted in deep learning (DL) that has demonstrated the ability to correctly
inject a log statement into Java methods in ∼15% of cases. Nevertheless, LANCE grapples with two primary
constraints: (i) it presumes that a method necessitates the inclusion of logging statements and; (ii) it allows the
injection of only a single (new) log statement, even in situations where the injection of multiple log statements
might be essential. To address these limitations, we present LEONID, a DL-based technique that can distinguish
between methods that do and do not require the inclusion of log statements. Furthermore, LEONID supports
the injection of multiple log statements within a given method when necessary, and it also enhances LANCE’s
proficiency in generating meaningful log messages through the combination of DL and Information Retrieval
(IR).
1. Introduction

The practice of injecting log statements in applications’ code is
widely adopted both in industry and open source projects (Oliner
et al., 2012). Indeed, log statements are instrumental to support sev-
eral software-related activities, including program comprehension and
debugging (Lu et al., 2017; Gurumdimma et al., 2016). Given its popu-
larity, it comes without surprise the proliferation of libraries to support
logging activities: just for Java some possible options are Log4j (Log4J,
2022), JCL (Java, 2022), slf4j (QOS.ch, 2022b), and logback (QOS.ch,
2022a).

While logging is usually perceived as a good practice, it comes
with its own drawbacks: Excessive logging could negatively impact
performance and, if not carefully conceived, log statements can result in
security issues such as providing access to user credentials or sensitive
information. Also, researchers documented several bad practices that
should be avoided while logging code (Chen and Jiang, 2017a; Li et al.,
2019).

In general, logging poses several challenges to software developers.
First, they need to decide what to log, by finding the right amount of log
statements needed in the application without, however, flood it with
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useless log statements. Second, developers must log at the proper level,
namely select the proper log level for each entry (e.g., info, warning,
error). Third, log statements must be accompanied by meaningful and
informative log messages that can be easily understood.

To support developers in these activities, researchers proposed tech-
niques and tools automating specific aspects of logging, such as rec-
ommending (i) where/what to log (Yuan et al., 2010; Jia et al., 2018;
Li et al., 2018, 2020b), and (ii) the right level to use for a given log
statement (Yuan et al., 2012a; Oliner et al., 2012; Li et al., 2017, 2020a,
2021). In our first attempt to automate logging activities (Mastropaolo
et al., 2022), we presented LANCE, an approach built on top of a Text-
To-Text-Transfer-Transformer (T5) (Raffel et al., 2020) deep learning
(DL) model trained to generate and inject a complete log statement
in a Java method provided as input. T5 has been pre-trained on a set
of ∼6.8M Java methods using the classic ‘‘masked language modeling’’
objective (Raffel et al., 2020). In the case of LANCE, this means that
during pre-training the model is provided as input a Java method with
15% of its tokens masked and it is expected to predict the masked
tokens. Such a pre-training task provides T5 with knowledge about the
language of interest (i.e., Java).
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Table 1
State-of-the-art approaches supporting developers in logging activities.

Ref. Venue Name Log Log injection Need for log statements

Level Position Message Single Multiple

Zhu et al. (2015) ICSE 2015 LogAdvisor ✗ ✓ ✗ ✓ ✗ ✗

Yao et al. (2018) ICPE 2018 Log4Perf ✗ ✓ ✗ ✓ ✗ ✓

Mizouchi et al. (2019) ICPC 2019 PADLA ✓ ✗ ✗ ✓ ✓ ✗

Li et al. (2020b) ASE 2020 ✗ ✓ ✗ ✓ ✗ ✗

Li et al. (2021) ICSE 2021 DeepLV ✓ ✓ ✗ ✓ ✗ ✗

Ding et al. (2022) SANER 2022 LoGenText ✗ ✗ ✓ ✓ ✗ ✗

Mastropaolo et al. (2022) ICSE 2022 LANCE ✓ ✓ ✓ ✓ ✗ ✗

Our work – LEONID ✓ ✓ ✓ ✓ ✓ ✓
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Once pre-trained, the model has been fine-tuned for the specific
ask of interest. In this case, we selected ∼62k Java methods and

removed from them exactly one log statement asking the model to
generate and inject it, thus deciding where to log (i.e., in which part
of the method), which log level to use, and what to log (i.e., generate
a meaningful log message in natural language). LANCE is the first
approach supporting developers in all these activities. The empirical
evaluation we run (Mastropaolo et al., 2022) showed that LANCE was
able to correctly predict the appropriate location of a log statement and
its level in ∼66% of cases, while the approach struggling in predicting
a meaningful log message, being successful in 15.2% of test instances.

While LANCE represents a step ahead in logging automation, it
comes with some limitations. First, it assumes that only one log state-
ment is needed in a Java method provided as input. This is due to
he training procedure we employed that asks the model to always
enerate a single log statement. Second, given a Java method, LANCE
annot assess whether log statements are needed at all. Indeed, in some
ases, enough log statements may be already present in the method or,
aybe, the method does not feature statements that would benefit from

ogging. Finally, LANCE showed substantial limitations in synthesizing
eaningful natural language log messages. In this work we study how

o partially address these limitations.
We start replicating LANCE by training and testing it on a dataset

.6 times larger than the one we used originally (Mastropaolo et al.,
022) (230k training instances vs. 63k). Besides being larger, the new
ataset features a more variegate set of log statements. Then, we
resent LEONID as an extension of LANCE able to (i) discriminate
etween methods needing and not needing the injection of new log

statements; and (ii) in case a need for log statements is identified,
LEONID, differently from LANCE, can decide the proper number of
log statements to inject (which can be higher than one) and properly
place them in the correct position. We found that LEONID can correctly
predict the need for log statements with an accuracy higher than 90%.
Also, when log statements are needed, LEONID can generate and inject
in the right position multiple complete log statements in ∼17% of cases.

Finally, in LEONID we attempted to improve the performance
achieved in the generation of meaningful log messages by exploiting
a combination of DL and Information Retrieval (IR). Indeed, based on
the results we achieved with LANCE, the generation of log messages
really looked like the Achilles’ heel of DL-based log generation. Results
show that by increasing the size of the training dataset, the ability
of LANCE in predicting meaningful substantially improves (+100% as
compared to what we reported in Mastropaolo et al. (2022)). Instead,
the combination of DL and IR we propose in LEONID only marginally
improves the results for this specific task (+5% relative improvement).

Table 1 shows how LEONID widens the support provided to devel-
opers in the automation of logging activities. Indeed, it is the only one
deciding whether log statements are needed in a method and, in case
of positive answer, synthesizing multiple and complete log statements,
and inject them in the correct position.
2
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2. LEONID

We start by providing an introduction to the T5 model we use
(Section 2.1), the same we also exploited in LANCE (Mastropaolo et al.,
2022). Then, we describe how we built the datasets used for the
different training phases we deal with (Section 2.2). Section 3 will then
explain how we used these datasets to run the actual training process.

2.1. Text-to-Text-Transfer-Transformer (T5)

T5 has been introduced by Raffel et al. (2020) as a Transformer
(Vaswani et al., 2017) model to support multitask learning. The idea
behind T5 is to reframe NLP tasks in a unified text-to-text format in
which the input and output of the model are text strings. The training
of T5 includes two phases. The first is the pre-training, in which the
model is trained with a self-supervised objective to acquire general
knowledge about the language(s) of interest. For example, this may
mean providing as input to the model English sentences having a subset
of their words masked and asking the model to generate as output the
masked words. Being self-supervised (i.e., the training instances can be
automatically generated by masking random words) the pre-training
can usually be performed on large-scale datasets. Once pre-trained, T5
can be fine-tuned to support specific tasks with supervised training
objectives. This means, for example, providing it with pairs of sentences
<english, spanish> to train a translator.

In our work, we rely on the same T5 architecture (i.e., T5𝑠𝑚𝑎𝑙𝑙) we
xploited in LANCE (Mastropaolo et al., 2022). T5small is characterized
y six blocks for encoders and decoders. The feed-forward networks
n each block consist of a dense layer with an output dimensionality
𝑑𝑓𝑓 ) of 2048. The key and value matrices of all attention mechanisms
ave an inner dimensionality (𝑑𝑘𝑣) of 64, and all attention mechanisms
ave eight heads. All the other sub-layers and embeddings have a
imensionality (𝑑𝑚𝑜𝑑𝑒𝑙) of 512. We acknowledge that employing larger
odels such as T5𝑏𝑎𝑠𝑒 or T5𝑙𝑎𝑟𝑔𝑒 can influence the performance of

EONID when automating logging activities, but this comes at the ex-
ense of increased time and computational power requirements during
he training process. The code implementing T5 is available in our
eplication package (Mastropaolo, 2023).

.2. Datasets needed for training, validation, and testing

We start by describing the dataset used for pre-training T5 (Sec-
ion 2.2.1). Then, we detail the several fine-tuning datasets we built
featuring training, validation, and test set). The first, aimed at repli-
ating LANCE (Mastropaolo et al., 2022), teaches T5 how to inject
single log statement in a Java method (Section 2.2.2). The second

ine-tuning dataset also focuses on the problem of injecting a single
og statement, but this time exploits IR to provide T5 with concrete
xamples of log messages that might be relevant for the prediction at
and (Section 2.2.3). This allows to compare LANCE with LEONID in
he task of single log statement injection. The third fine-tuning dataset
rains LEONID for the task of multi-log statements prediction, i.e.,

njecting from 1 to 𝑛 log statements in a given method (Section 2.2.4).
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Table 2
Number of methods in the datasets used in our study.

Dataset Train Eval Test

w/ log w/o log w/ log w/ log

Pre-training – 12,671,475 – –
Fine-tuning: Single Log Generation 229,703 – 28,763 28,698
Fine-tuning: Single Log Generation with IR 229,703 – 28,763 28,698
Fine-tuning: Multi-log Injection with IR 192,773 – 24,092 24,088
o
o
a

Finally, we describe the fine-tuning dataset to train a T5 able to
discriminate between methods needing and not needing log statements
Section 2.2.5). The datasets are summarized in Tables 2 and 3 and
vailable in Mastropaolo (2023).

All datasets have been built starting from the same set of GitHub
epositories that we selected using the GHS (GitHub Search) tool by
abic et al. (2021). GHS allows to query GitHub for projects meeting

pecific criteria. We used the same selection criteria exploited in our
ormer work on LANCE (Mastropaolo et al., 2022), selecting all public
on-forked Java projects having at least 500 commits, 10 contributors,
nd 10 stars. These selection criteria aim at excluding personal/toy
rojects and reduce the chance of collecting duplicated code (non-
orked repositories). We cloned the latest snapshot of the 6352 projects
eturned by GHS. We scanned all cloned repositories to assess whether
hey featured a POM (Project Object Model) or a build.gradle
ile. Both these files allow to declare external dependencies towards
ibraries, the former using Maven, the latter Gradle. Such a check
as performed since, as a subsequent step, we verify whether projects
ad a dependency towards Apache Log4j (Log4J, 2022) (i.e., a well-
nown Java logging library) or SLF4J (Simple Logging Facade for
ava) (QOS.ch, 2022b) (i.e., an abstraction for Java logging frameworks
imilar to Log4j). Indeed, to train a T5 for the task of injecting complete
og statement(s) in Java methods, we need examples of methods featur-
ng log statements. The usage of popular logging Java libraries was thus
prerequisite for the project’s selection.

We found 3865 projects having either a POM or a build.gradle
ile and 2978 of them featured a dependency towards at least one
ogging library. The overall projects’ selection is very similar to the one
e performed in Mastropaolo et al. (2022), with the main differences
eing the additional mining of projects: (i) using Gradle as build system
in Mastropaolo et al. (2022) only Maven was considered); and (ii)
aving a dependency towards SLF4J (in Mastropaolo et al. (2022)
nly Log4j was considered). These choices help in increasing the size
nd variety of both the training and the testing datasets, making the
rediction more challenging.

We used srcML (SrcML, 2022) to extracted all Java methods in the
elected projects. Then, we identified the log statements within each
ethod (if any) and removed all methods featuring log statements

xploiting custom log levels (i.e., log levels that do not belong to any
f the two libraries we consider, but that have been defined within
specific project). The valid log levels we considered are: FATAL,
RROR, WARN, DEBUG, INFO, and TRACE. At this point we were left
ith two sets of methods: those not having any log statement and those
aving at least one log statement using one of the ‘‘valid’’ log levels.

We run javalang (Thunes, Thunes) on these methods to tokenize
hem and excluded all those having #𝑡𝑜𝑘𝑒𝑛𝑠 < 10 or #𝑡𝑜𝑘𝑒𝑛𝑠 ≥ 512. The
pper-bound filtering has been done in previous works (Mastropaolo
t al., 2021; Tufano et al., 2021; Ciniselli et al., 2021; Tufano et al.,
019a,b) to limit the computational expenses of training DL-based mod-
ls. The lower-bound of 10 tokens aims at removing empty methods.
e also removed all methods containing non-ASCII characters in an

ttempt to exclude at least some of the methods featuring log messages
ot written in English. Finally, to avoid any possible overlap between
he training, evaluation, and test datasets we are going to create from
he collected set of methods, we removed all exact duplicates, obtaining
he final set of 12,916,063 Java methods, of which 244,588 contain at
east one log statement.
3

2.2.1. Pre-training dataset
Since the goal of pre-training is to provide T5 with general knowl-

edge about the language of interest (i.e., Java), we used for pre-training
all methods not featuring a log statement (the latter will be used for the
fine-tuning datasets). We adopted a classic masked language model task,
which consists in randomly masking 15% of the tokens composing a
training instance (i.e., a Java method) asking the model to predict them.

Fig. 1 depicts the masking procedure of instances used to pre-train
the model.

2.2.2. Fine-tuning dataset: Single Log Generation
We build a fine-tuning dataset aimed at replicating what we did

in the training of LANCE (Mastropaolo et al., 2022). We process each
method 𝑀 having 𝑛 ≥ 1 log statements by removing from it one log
statement (i.e., leaving it with 𝑛−1 log statements). This allows to create
a training pair ⟨𝑀𝑠,𝑀𝑡⟩ with 𝑀𝑠 representing the input provided to
the model (i.e., 𝑀 with one removed log statement) and 𝑀𝑡 being the
expected output (i.e., 𝑀 in its original form, with all its log statements).
This is the dataset used to train LANCE (Mastropaolo et al., 2022) and
it allows to train a model able, given a Java method as input, to inject
in it one new log statement. For methods having 𝑛 > 1 (i.e., more than
ne log statement), we created 𝑛 pairs ⟨𝑀𝑠,𝑀𝑡⟩, each of them having
ne of the 𝑛 log statements removed (i.e., different 𝑀𝑠). To ensure that
fter the log statement removal our instances still featured valid Java

methods, we parsed each 𝑀𝑠 using JavaParser (JavaParser, 2022) and
removed all pairs including an invalid 𝑀𝑠.

We split the remaining pairs into training (80%), validation (10%)
and test (10%) set as reported in Table 2. Training and testing a
T5 model on this dataset basically means performing a differentiated
replication of LANCE on a 3.6× larger and more variegate (multiple
logging libraries) dataset.

2.2.3. Fine-tuning dataset: Single Log Generation with IR
In LEONID, we combine DL and IR with the goal of boosting per-

formance especially in the generation of meaningful log messages. The
main idea is to augment the input provided to the model (i.e., 𝑀𝑠) with
log messages belonging to methods similar to 𝑀𝑠 which are featured
in the training set. For each of the 244,588 ⟨𝑀𝑠,𝑀𝑡⟩ pairs in the
fine-tuning dataset described in Section 2.2.2 (this includes training,
validation, and test), we identify the 𝑘 most similar pairs in the training
set. The similarity between two pairs is based on the similarity of their
𝑀𝑠 (i.e., the method in which the log statement must be created) and it
is computed using the Jaccard similarity (Hancock, 2004) index, based
on the percentage of code tokens shared across the two methods. We
then use these 𝑘 similar methods to extract from them examples of log
messages used in coding contexts which are similar to the 𝑀𝑠 at hand.

Two clarifications are needed. First, independently if a given pair
is in the training, validation, or test set, we extract its 𝑘 most similar
pairs only from the training set. This is needed since, while predicting
the log statement to inject, the training set must be the only knowledge
available to the model (i.e., the test set must be composed of previously
unseen instances). Second, when computing the Jaccard similarity, we
remove from the compared methods all log statements, since we want
to identify similar ‘‘coding contexts’’ that may require similar log state-
ments. We created three different fine-tuning datasets using different
values of 𝑘 = {1, 3, 5} (thus, a lower/higher number of exemplar log
messages provided to the model).
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Fig. 1. Example of pre-training instance.
Table 3
Number of methods in the datasets used to predict the need for log statements.
Dataset Train Eval Test

Need No need Need No need Need No need

Fine-tuning: Need4Log (50–50) 98,848 92,126 12,257 11,468 11,627 11,627
Fine-tuning: Need4Log (75–25) 98,848 92,126 12,257 11,468 12,159 4053
Fine-tuning: Need4Log (25–75) 98,848 92,126 12,257 11,468 3875 11,627
Fine-tuning: Need4Log (2–98) 98,848 92,126 12,257 11,468 238 11,627
Fig. 2 shows an example of training instance for this fine-tuning
ataset. The method on top represents the 𝑀𝑠 Java method in which a

log statement must be injected (i.e., the one highlighted in red). The
method is enriched with the exemplar log messages that have been
found in the 𝑘 = 1 most similar method shown in the bottom. Besides
the log messages, we also provide T5 with the Jaccard similarity
between the 𝑀𝑠 at hand (top of the figure in this case) and the method
of the training set from which the exemplar log message(s) has been
extracted. This is meant to provide T5 with an additional hint in terms
of which exemplar message comes from the most similar coding context
(when more messages are retrieved). Note that the instances in this
dataset are exactly the same of the one previously described to replicate
LANCE (see Table 2). This allows a direct comparison in terms of
performance which will provide information about the gain, if any,
provided by the IR integration.

2.2.4. Fine-tuning dataset: Multi-log Injection with IR
One limitation of LANCE (Mastropaolo et al., 2022) we aim at

addressing in this extension is the assumption that a Java method
provided as input always requires one new log statement to be injected.

Also for this dataset, LEONID exploits a combination of DL and IR,
thus we follow a process similar to the one described in Section 2.2.3,
with the main difference being the number of log statements we ask
the model to generate. Given a method 𝑀 featuring 𝑛 log statements,
we randomly select 𝑦 log statements to remove from it, with 1 ≤
𝑦 ≤ 𝑛. This means that we create pairs ⟨𝑀𝑠,𝑀𝑡⟩ in which 𝑀𝑠 lacks
a ‘‘random’’ number of log statements that must be generated by the
model to obtain the target method 𝑀𝑡. This makes the prediction task
substantially more challenging as compared to the single-log injection
4

scenario experimented in LANCE. Also in this case we parsed each 𝑀𝑠
using JavaParser (JavaParser, 2022) and removed all pairs including
an invalid 𝑀𝑠. The remaining part of the process (i.e., identifying the
𝑘 most similar pairs to inject examples of log messages) is the same
described in Section 2.2.3. Table 2 shows the distribution of instances
among the training, evaluation, and test set for this dataset as well.

2.2.5. Fine-tuning dataset: Deciding whether log statements are needed
While the dataset described in Section 2.2.4 allows to build a model

able to inject multiple log statements in a given Java method, such a
model still assumes that at least one log statement must be injected in
the input method. Thus, LEONID also includes a T5 model trained as
a binary classifier in charge of deciding whether a method provided
as input requires the addition of log statements or not. In case of
affirmative answer, the method can then be passed to the previously
trained model which will decide how many and which log statements
to inject. To train such a classifier we again start from the original
set of 244,588 Java methods having at least one log statement. Then,
similarly to what done in Section 2.2.4, given a method 𝑀 featuring 𝑛
log statements, we randomly select 𝑦 log statements to remove from it
with, however, 0 ≤ 𝑦 ≤ 𝑛. Thus, differently from the training dataset
used for multi-log injection, we have instances from which we did not
remove any log statement (𝑦 = 0). Then, we create a pair ⟨𝑀𝑠, 𝐵⟩ in
which 𝑀𝑠 is the original method 𝑀 possibly lacking a random number
of log statements, while 𝐵 is a boolean variable that could be equal
true (i.e., 𝑀𝑠 needs the addition of log statements, since 𝑦 ≥ 1) or false
(i.e., no log statements are needed in 𝑀𝑠, since 𝑦 = 0). Non-parsable
methods resulting after the removal of the log statements have then
been removed, as well as duplicates resulting from different methods
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Fig. 2. Example of instance in the ‘‘Single Log Generation with IR’’ dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
that, after the removal of log statements, become equal (i.e., their only
differences were the removed log statements). This process resulted
in a dataset featuring 190,974 training instances (98,848 needing at
least a log statement and 92,126 not needing it), accompanied by the
evaluation and test sets summarized in Table 3.

As it can be seen, four different versions of the test set have been
created, to experiment LEONID in different scenarios. Let us explain
such a choice. The test set should be representative of the real distri-
bution of methods needing and not needing log statements. However,
such a distribution cannot be computed in a reliable way. Indeed, one
possibility we considered to build our dataset was to just consider
all methods with and without log statements as training instances (as
opposed to work only with methods having at least a log statement
as we do). In a nutshell, the process would have been: (i) remove a
random number of log statements from the methods with at least one
log statement to create instances needing logs; and (ii) assume that
all methods without log statements do not require logging. However,
assuming that all methods in a project not having log statements do
not require logging is a very strong assumption. It is indeed possible
that the project’s developers just did not consider yet the usage of logs
in a specific method or that, in a given project, logging is not yet a
practice at all (thus all methods do not use log statements). This makes
difficult a reliable computation of the number of methods needing and
ot needing logging. Also, such a problem justifies our decision to create
nstances of methods needing/not needing a log statement starting from
5

all methods having at least one log statement and using the process
described above (i.e., removing a random number of statements to
create instances in need of logging, and not removing any log statement
to create instances not needing logging). At least, we are sure that these
are methods for which developers considered logging (since they have
at least one log statement) and, thus, can be seen as a sort of ‘‘oracle’’.

The four test sets in Table 3 simulate four different distributions
of methods needing/not needing log statements: balanced (50% per cat-
egory), unbalanced towards needing (75%–25%), unbalanced towards
not needing (25%–75%), and strongly unbalanced towards not needing
(2%–98%). The latter is a distribution we computed based on all
12M+ methods we mined, in which 98% of methods do not have log
statements, while 2% have it. As said, this distribution is not completely
reliable but, at least, gives an idea of what we found in the mined
projects.

3. Training and hyperparameter tuning

All training we performed have been run using a Google Colab’s
2 × 2, 8 cores TPU topology with a batch size of 128.

3.1. Tokenizer training

Since we use software-specific corpora for pre-training and fine-
tuning, we trained a tokenizer (i.e., a SentencePiece model Kudo and
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Table 4
T5 hyperparameter tuning results (in bold the best learning rate).

Experiment C-LR ST-LR ISQ-LR PD-LR

Fine-tuning: Single Log Generation with IR (𝑘 = 1) 24.63% 25.92% 26.55% 26.36%
Fine-tuning: Single Log Generation with IR (𝑘 = 3) 26.25% 26.04% 26.68% 26.33%
Fine-tuning: Single Log Generation with IR (𝑘 = 5) 26.24% 25.69% 26.78% 26.33%

Fine-tuning: Multi-log Generation with IR (𝑘 = 1) 22.62% 22.19% 22.79% 22.76%
Fine-tuning: Multi-log Generation with IR (𝑘 = 3) 22.64% 22.28% 23.05% 22.59%
Fine-tuning: Multi-log Generation with IR (𝑘 = 5) 22.71% 22.14% 22.78% 22.51%

Fine-tuning: Need4Log 96.58% 96.56% 96.59% 96.62%
i
s
a
d

Table 5
Configurations for the experimented learning rates.

Learning rate type Parameters

Constant 𝐿𝑅 = 0.001
Inverse square root 𝐿𝑅𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 = 0.01

𝑊 𝑎𝑟𝑚𝑢𝑝 = 10, 000
Slanted triangular 𝐿𝑅𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 = 0.001

𝐿𝑅𝑚𝑎𝑥 = 0.01
𝑅𝑎𝑡𝑖𝑜 = 32
𝐶𝑢𝑡 = 0.1

Polynomial decay 𝐿𝑅𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 = 0.01
𝐿𝑅𝑒𝑛𝑑 = 0.001
𝑃𝑜𝑤𝑒𝑟 = 0.5

Richardson, 2018) on 1M Java methods randomly extracted from
he pre-training dataset and 712,634 English sentences from the C4
ataset (Raffel et al., 2020). We included English sentences since, once
ine-tuned, the models may be required to synthesize complex (natural
anguage) log messages. We set the size of the vocabulary to 32k
ord-pieces.

.2. Pre-training

We pre-trained T5 for 500k steps on the pre-training dataset com-
osed by 12,671,475 Java methods (Table 2). Given the size of our
ataset and the batch size, 500k steps correspond to ∼5 epochs. The
aximum size of the input/output was set to 512 tokens.

.3. Hyperparameter tuning

Once pre-trained the model, we finetune the hyperparameters of the
odel following the same procedure we employed when developing

ANCE. Such a procedure has been executed for each of the fine-
uning datasets previously described. In particular, we assessed the
erformance of T5 when using four different learning rate scheduler:
i) Constant Learning Rate (C-LR): the learning rate is fixed during the
hole training; (ii) Inverse Square Root Learning Rate (ISR-LR): the

learning rate decays as the inverse square root of the training step;
(iii) Slanted Triangular Learning Rate (Howard and Ruder, 2018) (ST-
LR): the learning rate first linearly increases and then linearly decays
to the starting learning rate; and (iv) Polynomial Decay Learning Rate
(PD-LR): the learning rate decays polynomially from an initial value to
an ending value in the given decay steps. The exact configuration of all
the parameters used for each scheduling strategy is reported in Table 5.

Each model has been run for 100k training steps on the fine-tuning
dataset. Then, its performance has been assessed on the evaluation set
in terms of correct predictions (i.e., cases in which the generated output
s equal to the target one).

For the generative models injecting log statements this means that
hey outputted the Java method featuring all correct log statements
n the expected positions. For the classifier, it means that it correctly
redicted the need for log statements in a given method. The results
chieved with each learning rate are reported in Table 4. Our hyperpa-
ameter tuning required training and evaluating 28 models: For each
6

f the 7 fine-tuning datasets in Table 4 we experimented 4 different
learning rates. Given the achieved results, we will use the ISQ-LR for
the generative models, and the PD-LR for the classifier when fine-tuning
the models. Concerning the ‘‘replication of LANCE’’ (i.e., fine-tuning
T5 on the dataset Fine-tuning: Single Log Generation in Table 2), we
did not perform any hyperparameter tuning, but relied on the best
configuration reported in the original paper (Mastropaolo et al., 2022),
thus using the PD-LR.

3.4. Fine-tuning

Once identified the best learning rates to use, we fine-tuned the final
models using early stopping, with checkpoints saved every 10k steps,
a delta of 0.01, and a patience of 5. This means training the model on
the fine-tuning dataset and evaluating its performance (again in terms
of correct predictions) on the evaluation set every 10k. The training
process stops if a gain lower than delta (0.01) is observed at each 50k
steps interval. This means that after 60k steps, the performance of the
model is compared against that of the 10k checkpoint and, if the gain
in performance is lower than 0.01, the training stops and the best-
performing checkpoint up to that training step is selected. This process
has been used for all models, including the one replicating LANCE. Our
replication package (Mastropaolo, 2023) reports the convergence of all
models (i.e., the steps after which the early stopping criterion was met).

3.5. Generating predictions

Once the T5 models have been pre-trained and fine-tuned, they can
be used to generate predictions for the targeted tasks. We generate pre-
dictions using a greedy decoding strategy, meaning that the generated
prediction is the result of selecting at each decoding step the token
with the highest probability of appearing in a specific position. Thus, a
single prediction (i.e., the one maximizing the likelihood of among all
the produced tokens) is generated for an input sequence, as compared
to strategies such as beam-search (Freitag and Al-Onaizan, 2017) that
generate multiple predictions.

4. Study design

The goal of our study is to evaluate the performance of LEONID
n supporting logging activities in Java methods. We focus on three
cenarios: single log injection, in which we compare with our previous
pproach LANCE (Mastropaolo et al., 2022); multi-log injection; and
eciding weather log statements are needed or not in a given Java

method. The context is represented by the test datasets reported in
Table 2 (single and multi-log injection) and Table 3 (deciding whether
logging is needed).

We aim at answering the following research questions:

RQ1: To what extent is LEONID able to correctly inject a single complete
logging statement in Java methods? RQ1 mirrors the study we
performed when presenting LANCE. We experiment LEONID in
the same scenario presented in Mastropaolo et al. (2022): The
injection of a single log statement in a given Java method. We
compare the performance of LEONID with that of LANCE when

training and testing them on the same dataset.
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RQ2: To what extent is LEONID able to correctly inject multiple log state-
ments when needed? RQ2 tests LEONID in the more challenging
scenario of injecting from 1 to 𝑛 log statements in a Java method,
as needed.

RQ3: To what extent is LEONID able to properly decide when to inject
log statements? RQ3 analyzes the accuracy of LEONID in predicting
whether or not log statements are needed in a given Java method.
Additionally, we assess LEONID as a whole using it to both predict
the need for log statements and, subsequently, generate and inject
them (if needed).

4.1. Data collection and analysis

To answer RQ1 we run both LEONID and LANCE against the test
set described in Table 2 for the single log generation task. The only
difference is that LANCE has been trained on the dataset not featuring
the exemplar log messages added through IR (row Fine-tuning: Single
Log Generation in Table 2), while LEONID exploits this information
(row Fine-tuning: Single Log Generation with IR in Table 2). However, the
training and test instances are exactly the same, allowing for a direct
comparison. We assess the performance of the two techniques using the
same evaluation schema employed in Mastropaolo et al. (2022). In par-
ticular, we contrast the predictions generated by the two models against
the expected output (i.e., the Java method provided as input with
the addition of the correct log statement). Note that generating and
injecting a log statement (e.g., LoggerUtil.debug("execution
ok")) involves correctly predicting several information: (i) the name of
the variable used for the logging (i.e., LoggerUtil); (ii) the log level
(i.e., debug); (iii) the log message (i.e., "execution ok"); and (iv)
the position in the method in which the log statement must be injected.
Thus, when a prediction is generated, three scenarios are possible:

Correct prediction: A prediction that correctly captures all above-
described information, i.e., it matches the name used for the vari-
able, the log level, message, and position as written by the original
developers.

Partially correct prediction: A prediction that correctly captures
a subset of the needed information (e.g., it correctly generates the log
statement but injects it in the wrong position).

Wrong prediction: None of the above-described information is
correctly predicted.

We answer RQ1 through the following combination of quantitative
and qualitative analysis. On the quantitative side, we report for both
LEONID and LANCE the percentage of correct, partially correct, and
wrong predictions. For the partially correct, we report the percentage
of cases in which each of the ‘‘log statement components’’ (i.e., variable
name, log level, log message, and log position) has been correctly
predicted. As for the percentage of correct and partially correct predic-
tions, we pairwise compare them among the experimented techniques,
using the McNemar’s test (McNemar, 1947), which is a proportion
test suitable to pairwise compare dichotomous results of two different
treatments. We complement the McNemar’s test with the Odds Ratio
(OR) effect size. We use the Holm’s correction procedure (Holm, 1979)
to account for multiple comparisons.

Concerning the quality of the log messages generated by the two
techniques, looking for exact matches (i.e., cases in which the generated
log message is identical to the one written by developers) is quite
limitative considering that a prediction including a message different
but semantically equivalent to the target one could still be valuable.
For this reason, we also compute the following four metrics used in
Natural Language Processing (NLP) for the assessment of automatically
generated text:

BLEU (Papineni et al., 2002) assesses the quality of the automat-
ically generated text in terms of 𝑛-grams overlap with respect to the
target text. The BLEU score ranges between 0 (the sequences are
completely different) and 1 (the sequences are identical) and can be
7

computed considering four different values of 𝑛 (i.e., BLEU-{1, 2, 3,
4}). Besides these four variants, we also compute their geometric mean
(i.e., BLEU-A).

METEOR (Banerjee and Lavie, 2005) is a metric based on the
harmonic mean of unigram precision and recall. Compared to BLEU,
METEOR uses stemming and synonyms matching to better reflect the
human perception of sentences with similar meanings. Values range
from 0 to 1, with 1 being a perfect match.

ROUGE (Lin, 2004) is a set of metrics focusing on automatic sum-
marization tasks. We use the ROUGE-LCS (Longest Common Subse-
quence) variant which returns three values: the recall computed as
LCS(X,Y)/length(X), the precision computed as LCS(X,Y)/length(Y), and
the F-measure computed as the harmonic mean of recall and precision,
where X and Y represent two sequences of tokens.

LEVENSHTEIN Distance (Levenshtein, 1966) provides an indica-
tion of the percentage of words that must be changed in the synthesized
log message to match the target log message. This is accomplished
by computing the normalized token-level Levenshtein distance (Leven-
shtein, 1966) (NTLev) between the predicted log message and the target
one. Such a metric can act as a proxy to estimate the effort required to
a developer in fixing a non-perfect log message suggested by the model.

We also statistically compare the distribution of the BLEU-4 (com-
puted at sentence level), METEOR, ROUGE, and LEVENSHTEIN dis-
tance related to the predictions generated by LEONID and LANCE. We
assume a significance level of 95% and use the Wilcoxon signed-rank
test (Wilcoxon, 1945), adjusting 𝑝-values using the Holm’s correc-
tion (Holm, 1979). The Cliff’s Delta (𝑑) is used as effect size (Grissom
and Kim, 2005) and it is considered: negligible for |𝑑| < 0.10, small
for 0.10 ≤ |𝑑| < 0.33, medium for 0.33 ≤ |𝑑| < 0.474, and large for
|𝑑| ≥ 0.474 (Grissom and Kim, 2005).

On the qualitative side, we manually inspected 300 of the par-
tially correct predictions generated by both techniques and having
all information but the log message correctly predicted. The goal of
the inspection is to verify whether the generated log message, while
different from the target one, is semantically equivalent to it. To this
aim, two of the authors independently inspected all 600 log messages
(300 for each approach), with ∼11% (70) arisen conflicts being solved
by a third author. We report the percentage of ‘‘wrong’’ log messages
generated by both techniques classified as semantically equivalent to
the target one.

To answer RQ2 and evaluate the extent to which LEONID is able
to correctly inject multiple log statements, we run LEONID against the
test set reported in Table 2 (see row Fine-tuning: Multi-log Injection with
IR). We then report the percentage of correct predictions generated by
the approach (i.e., methods for which all 𝑛 log statements that LEONID
was supposed to generate and inject have been correctly predicted).
In this case we do not compute the partially correct predictions since,
if a prediction is not completely correct, it is not possible to match
the generated log statements with the target ones to compare them.
To make this concept more clear, consider the case in which LEONID
was asked to generate two log statements 𝑠1 and 𝑠2 but it only injects
one statement 𝑠𝑖, being different from both 𝑠1 and 𝑠2. We cannot
know whether 𝑠𝑖 should be compared with 𝑠1 or with 𝑠2 to assess the
percentage of partially correct predictions in terms of e.g., log level. For
this reason, we only focus on the predictions being 100% correct (i.e.,
the output method is identical to the target one).

To answer RQ3, we run LEONID against the test sets presented in
Table 3, reporting the confusion matrix of the generated predictions
and the corresponding accuracy, recall, and precision. We compare
these results with those of: (i) an optimistic classifier always predicting
true (i.e., the method is in need for log statements); (ii) a pessimistic
classifier always predicting false (i.e., no need for log statements); and
(iii) a random classifier, randomly predicting true or false for each input
instance. We use the same statistical analysis described for RQ1 to
compare LEONID with the baselines.
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Table 6
RQ1: Correct and partially correct predictions by LEONID and LANCE on the single-log
injection task.

Variable Level Message Position LEONID
(k = 5)

LANCE 𝑝-value OR

✓ ✓ ✓ ✓ 27.26% 26.78% <0.01 1.12
✓ – – – 76.45% 77.15% <0.01 0.88
– ✓ – – 73.53% 74.18% <0.01 0.91
– – ✓ – 31.55% 30.16% <0.01 1.36
– – – ✓ 82.35% 82.28% 0.71 1.01

5. Results discussion

We discuss the achieved results by research question.

5.1. RQ1: Injecting a single log statement

Table 6 reports the results achieved by LEONID and LANCE, in terms
f correct and partially correct predictions for the task of single-log
njection. For LEONID we only report the results when 𝑘 = 5, since this
s the variant that achieved the best performance (results with 𝑘 = 1
nd 𝑘 = 3 are available in Mastropaolo (2023)). The first row of Table 6
hows the percentage of correct predictions by both approaches, which
s slightly higher for LEONID (+1.8% of relative improvement, from
6.78% to 27.26%). This difference is statistically significant (adj. 𝑝-
alue < 0.01) with 1.12 higher odds of obtaining a correct prediction
rom LEONID as compared to LANCE.

The four subsequent rows report the cases in which one of the four
og-statement components (variable, level, message, and position) was
orrectly predicted (✓), independently from whether the other three
omponents were correct or not (−). As it can be seen, there is no
ignificant difference in the prediction of the log position, with both
echniques correctly predicting it in ∼82.3% of cases. Differences are

observed for the log variable and level in favor of LANCE (+1.0%
nd +0.9% relative improvement), and for the log message in favor of
EONID (+4.6% relative improvement). The log message is the part for
hich we observed the highest OR among all comparisons. Considering

hat the only difference between LEONID and LANCE is the usage of
R, the improvement in the generation of meaningful log messages we
argeted has been at least partially achieved. The latter has, however,
small price to pay in the correct prediction of the log variable and

evel. Still, for these elements LEONID is able to generate a correct
rediction in over 73.5% of cases, while the correct generation of the
og message still represents the Achilles’ heel of these techniques, with
1.55% correct predictions achieved by LEONID. Thus, we believe that
mprovements on the log message predictions should be favored even at
he expense of losing a bit of prediction capabilities on other elements.

Digging further into the quality of the generated log messages, Ta-
le 7 reports the results computed using the four NLP metrics presented
n Section 4 for both models (in bold the best results). All metrics
uggest that the log messages generated by LEONID are closer to those
ritten by humans. According to our statistical analysis (results in
able 8), all these differences are statistically significant (adj. 𝑝-value
0.001) with, however, a negligible effect size.

Also the result of our manual inspection of 300 partially correct
redictions by LEONID and by LANCE point to a similar story: We
ound 198 of those generated by LEONID (66%) to report the same
nformation of the target log message, despite being semantically dif-
erent. The remaining 102 (34%) predictions, instead, reported a log
essage completely different from the target one or not meaningful at

ll. For LANCE, the number of semantically equivalent log messages is
lightly lower – 192 (64%) – but inline with that observed for LEONID.
xamples of different but semantically equivalent log messages gen-
rated by LEONID are reported in Fig. 3. The methods labeled with
‘Target Java Method’’ represent the ‘‘oracle’’, namely the log statement
8

a

Table 7
RQ1: Evaluation metrics on log messages: LEONID vs. LANCE.

LANCE LEONID (𝑘 = 5)

BLEU-A (Papineni et al., 2002) 31.98 35.36
BLEU-1 47.30 50.00
BLEU-2 36.30 39.60
BLEU-3 33.90 35.00
BLEU-4 31.40 32.40

METEOR (Banerjee and Lavie, 2005) 58.60 60.35
ROUGE-LCS (Lin, 2004)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 42.57 44.68
𝑅𝑒𝑐𝑎𝑙𝑙 44.04 46.01
𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 42.19 44.33

LEVENSHTEIN (Levenshtein, 1966) 44.02 41.85

Table 8
RQ1: Statistical tests: LEONID vs. LANCE for NLP metrics.

Comparison Metric p-value d

LEONID (𝑘 = 1) vs. LANCE

BLEU-4 <0.001 −0.022 (N)
METEOR <0.001 −0.025 (N)
ROUGE-LCS (f-measure) <0.001 −0.025 (N)
LEVENSHTEIN <0.001 +0.022 (N)

LEONID (𝑘 = 3) vs. LANCE

BLEU-4 <0.001 −0.026 (N)
METEOR <0.001 −0.029 (N)
ROUGE-LCS (f-measure) <0.001 −0.023 (N)
LEVENSHTEIN <0.001 +0.027 (N)

LEONID (𝑘 = 5) vs. LANCE

BLEU-4 <0.001 −0.026 (N)
METEOR <0.001 −0.029 (N)
ROUGE-LCS (f-measure) <0.001 −0.026 (N)
LEVENSHTEIN <0.001 +0.029 (N)

that LEONID was supposed to generate. Those instead labeled with
‘‘Predicted Method’’ represents the generated prediction being different
from the expected target but, accordingly to our manual analysis, still
valid.

Answer to RQ1. The 3.6 larger training dataset (as compared to
the original one we used in Mastropaolo et al. (2022)), resulted in
a boost of performance when predicting the log message (15.20%
in Mastropaolo et al. (2022) vs. 30.16%). Such a result has been
further improved by LEONID, which achieves a +4.6% relative
improvement (i.e., 31.55% of correctly generated log messages).
All metrics used to assess the quality of the log messages gener-
ated by LEONID indicate improvements over LANCE. However,
these improvements are marginal, showing that more research
is needed to further improve the automated generation of log
messages.

5.2. RQ2: Injecting multiple log statements

As explained in Section 4, it is not possible to compute the partially
correct predictions in the scenario of multiple log injection. Thus, we
limit our discussion to the correct predictions generated by LEONID.
Independently from the value of 𝑘 (i.e., the number of similar coding
contexts from which exemplar log messages are extracted), LEONID
can correctly predict all log statements to inject in a given method in
>23% of cases. Also in this scenario, 𝑘 = 5 is confirmed as the best
configuration, with 23.51% of correct predictions. Fig. 4 depicts two
cases for which LEONID correctly recommended more than one log
statement: four in 1 and three in 2 .

Interestingly, the drop in performance as compared to the simpler
scenario of single log injection is there but is not substantial (27.26% vs.
23.51%). Remember that in this experiment we removed from a given
Java method 𝑀 a random number 𝑦 of log statements, with 1 ≤ 𝑦 ≤ 𝑛
nd 𝑛 being the number of log statements in 𝑀 . Thus, it is possible that
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Fig. 3. Examples of semantically equivalent log messages generated by LEONID.
most of the methods in our dataset had 𝑛 = 1 and, as a consequence,
𝑦 = 1 (i.e., LEONID must generate one log statement), thus making the
task similar to the single-log injection. For this reason, we inspected our
test set and found indeed that 85% of methods in it featured, in their
original form, a single log statement. On top of this, there is another
6.7% of methods which originally had more than one log statement
and from which we randomly removed 𝑦 = 1 statement, thus again
resulting in instances requiring the addition of a single log statement.
We clustered the instances in the test set based on the number of
log statements that LEONID was required to generate. We created two
subsets: (i) one-log, having 𝑦 = 1; and (ii) at-least-two-log, 𝑦 ≥ 2. The one-
log subset features 91.7% of the instances in the test set (22,104 out of
24,088) and, on those, LEONID achieves 24.1% correct predictions; the
two-log subset features 1984 instances (8.3%), on which LEONID has a
9

17.0% success rate. Thus, there is an actual performance drop when
LEONID needs to predict multiple log statements in a given method.
Still, in 17% of cases, LEONID is able to inject the same log statements
manually written by developers. To give a term of comparison, in
our original paper presenting LANCE (Mastropaolo et al., 2022), we
reported a 15.2% success rate for the task of single-log injection.

Answer to RQ2. LEONID can support the task of multiple log
injection, achieving 17.0% of correct predictions when more than
one log statement must be injected. It is important to highlight
that in this task it is up to the model to infer how many log
statements are actually needed in the method given as input,
making it more complex than the single-log injection experiment
even when only a single log statement must be injected.
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Fig. 4. Correct predictions made by LEONID when injecting more than one log statement.
Fig. 5. RQ3: Results achieved by LEONID when deciding whether log statements are needed or not in Java methods.
5.3. RQ3: Deciding whether log statements are needed

Fig. 5 reports the confusion matrices for the test sets in Table 3,
differing for the proportion of need/no need instances they feature. The
rows in the matrices represent the oracle and columns the predictions.
For example, the first matrix to the left indicates that out of the 11,627
(11,013+614) methods in need for log statements, LEONID correctly
identified 11,013 of them, wrongly reporting the remaining 614 as no
need.

The overall accuracy of the classifier is always very high (≥0.95),
indicating that most of instances are correctly classified. Similarly, the
recall for the ‘‘need’’ class is always ≥0.94 (see Fig. 5), suggesting that
most of the methods in need of log statements are identified.

Instead, the precision drops to 0.51 when the test set is very
unbalanced towards the ‘‘no need’’ class, with only 238 need instances.
Indeed, every classification error weights a lot more on the precision
when the number of need instances is so low: The 219 misclassifications
represent 49% — 219/(230+219) — of the instances that LEONID
classifies as in need of log statements. Given the overall very good
performance achieved by LEONID, we decided to inspect these 219
instances to understand the rationale behind the recommendation by
LEONID (i.e., add log statements). What we found is that, indeed, these
10
are cases which are worth the attention of the developers since they
may benefit from additional logging.

Fig. 6 shows two examples of ‘‘no need methods’’ classified by
LEONID as in need for additional log statements. We added the
LOG_STMT text bordered in red to indicate positions which may benefit
of logging, especially considering the other log statements present in
the method. For example, in method run 2 the developers used a
log statement to document the reason for the InterruptedExcep-
tion in the second try/catch, while a similar scenario in the first
try/catch is not logged. Overall, based on our manual inspection of
the ‘‘false positives’’, we are confident that these could still represent
valuable recommendations for developers.

When comparing the correct predictions achieved by LEONID with
those of the optimistic, pessimistic, and random classifier, we always
found a statistically significant difference in favor of LEONID (adj.
𝑝-value < 0.001) accompanied by an OR going from a minimum of
6.17 to a maximum of 1426. The only exception is, as expected, the
comparison with the pessimistic classifier on the 2–98 test set, on which
the pessimistic classifier achieves 98% of correct predictions. In this
case, we found no statistically significant difference (adj. 𝑝-value =
0.63) with LEONID (detailed results in Mastropaolo (2023)).

Finally, we conducted a full-system assessment in which we inte-
grated the classifier and generator into a pipeline that first determines



The Journal of Systems & Software 210 (2024) 111947A. Mastropaolo et al.
Fig. 6. 𝑅𝑄3: Examples of methods that may benefit from further logging. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 7. 𝑅𝑄3: Example of LEONID operating in an end-to-end logging scenario (i.e., classification and injection).
whether log statements are necessary, and if so, the module responsible
for injecting the logs is activated. Fig. 7 provides an overview of how
LEONID operates in an end-to-end logging scenario. In this context,
the CLASSIFIER module first determines whether log statements are
required for the target method. If log statements are necessary, the
INJECTOR component inserts one or more log statements into the
provided Java method.

The achieved results showed that our end-to-end logging system
can correctly inject ∼23% (5538/24,088) log statements when needed.
This must be compared with the 27.26% achieved in RQ1 when we
only assessed the generation of log statements, ‘‘providing’’ LEONID
11
only with instances that needed a log statement. Thus, while there is
a slight loss in performance, the achieved results confirm the ability of
LEONID in automatically assessing the need for log statements.

Answer to RQ3. LEONID can discriminate between methods need-
ing and not needing additional log statements, with an accuracy
higher than 0.95. This allows LEONID to both predict the need
for log statements and generating them.
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6. Threats to validity

Construct validity. The building of our fine-tuning datasets rely
on the assumption that the exploited code instances, as written by
developers, represent the ‘‘correct’’ predictions that the models should
generate. This is especially true for the classifier aimed at predicting
whether log statements are needed. For example, the instances that we
labeled as ‘‘not needing log statements’’ are methods featuring 𝑛 ≥ 1 log
statements from which we did not remove any log statement. Thus, we
assume that these methods need exactly 𝑛 log statements (i.e., the ones
injected by the developers), not one more. This is a strong assumption,
as confirmed by the examples in Fig. 6.

In addition, there is evidence in the literature showing that some
projects may adopt suboptimal logging practices (Patel et al., 2022),
thus again posing question on the quality of the adopted ground
truth. Future work should involve developers in the assessment of the
recommendations generated by LEONID or similar techniques. Still,
using the code written by developers as oracle is a popular practice in
DL for SE (Tufano et al., 2022b, 2019b,a; Watson et al., 2020b; Tufano
et al., 2022a).

It is important to notice that, when preparing the fine-tuning datase
we removed log statements from any location within a Java method.
As a consequence, certain methods may contain empty blocks (e.g., an
mpty if block that only contained the log statemet), thus hinting
he model to the right location in which the log statement should
e injected (since there is likely something missing in that unusual
mpty block). To address this problem, we assessed the model’s per-
ormance on a subset of our initial test set featuring 17,455 instances
∼73% of the original test set) in which there were no empty blocks
eft within the test method after removing the log statements. The
esults indicate that LEONID remains competitive even in this more
hallenging scenario, correctly generating and injecting log statements
n 25.30% (4416/17,455) of the test instances (as compared to the
7.26% obtained on the full test set).
Internal validity. We performed a limited hyperparameters tuning

nly focused on identifying the best learning rate, while we relied
n the best architecture identified by Raffel et al. (2020) for the
ther parameters. We acknowledge that additional tuning can result
n improved performance. Also, different similarity measures used to
etrieve similar 𝑀𝑠 from the training set may lead to different results.
ur choice of the Jaccard similarity was due to practical reasons: Since
given input method to LEONID must be compared with all entries in

he training set, we needed a very efficient similarity measure in terms
f required computational time. For example, we also implemented
variant of LEONID exploiting CodeBLEU (Ren et al., 2020) as a

imilarity measure. Considering that larger and larger training sets will
e likely used in future, a scalable solution is a must also to make
EONID usable in practice.
External validity. Our research questions have been answered

sing a dataset being 3.6 times larger as compared to the dataset we
riginally used when proposing LANCE (Mastropaolo et al., 2022).
lso, the new dataset is more variegated, featuring projects using
ifferent build systems (as compared to the Maven-only policy we
elied in Mastropaolo et al. (2022)) and having dependencies towards
ifferent logging libraries (differently from the original Log4j-only
olicy we end up using in Mastropaolo et al. (2022)). Still, we do
ot claim generalizability of our findings for different populations of
rojects, especially those written in other programming languages.
his holds not only when looking at the performance achieved on our
est set (i.e., different test sets can yield to different results), but also
hen considering the usage in LEONID of information collected via IR

rom the training set (i.e., the performance observed for LEONID are
ounded to the variety of data present in our training set). Additional
xperiments are needed to corroborate/contradict our findings.
12
7. Related work

7.1. Empirical studies on logging practices

Yuan et al. (2012a) conducted one of the first empirical study
on logging practices in open-source systems, analyzing C and C++
projects. They show that developers make massive usage of log state-
ments and continuously evolve them with the goal of improving debug-
ging and maintenance activities.

Fu et al. (2014) studied the logging practices in two industrial
projects at Microsoft, investigating in particular which code blocks are
typically logged. They also propose a tool to predict the need for a new
log statement, reporting a 90% F-Score.

Chen and Jiang (2017b) and Zeng et al. (2019) extended the study
of Yuan et al. (2012a) to Java and Android systems, respectively. In
particular, Chen analyzed 21 Java-based open-source projects while
Zeng et al. considered 1444 open-source Android apps mined from F-
Droid. Both studies confirmed the results of Yuan et al. (2012a), finding
a massive presence of log statements in the analyzed systems.

Zhi et al. (2019) investigated how logging configurations are used
and evolve, distilling 10 findings about practices adopted in logging
management, storage, formatting, and configuration quality. Other
researchers studied the evolution and stability of log statements. For
example, Kabinna et al. (2018) examined how developers of four
open source applications evolve log statements. They found that nearly
20%–45% of log statements change throughout the software lifetime.

Zhou et al. (2020) explored the impact of logging practices on
data leakage in mobile apps. In addition, they propose MobiLogLeak
to automatically identify log statements in deployed apps that leak
sensitive data. Their study show that 4% of the analyzed apps leak
sensitive data.

Recently, Li et al. (2020a) conducted an extensive investigation
on logging practice from a developer’s perspective. The goal of this
research is to push the design of automated tools based on actual
developers’ needs (rather than on researchers’ intuition). The authors
surveyed 66 developers and analyzed 223 logging-related issue reports
shedding light on the trade-off between costs and benefits of logging
practices in open source. The results show that developers adopt an ad
hoc strategy to compensate costs and benefits while inserting logging
statements for various activities (e.g., debugging).

The above-described papers lay the empirical foundations for tech-
niques supporting developers in logging activities (including our work).
Approaches such as LEONID can help in reducing the cost of logging
while supporting developers in taking proper decisions when they wish
to add log statements.

7.2. Automating logging activities

Researchers proposed techniques and tools to support developers in
logging activities.

Log message enhancement. Yuan et al. (2012b) proposed LogEn-
hancer as a prototype to automatically recommend relevant variable
values for each log statement, refactoring its message to include such
values. Their evaluation on eight systems demonstrates that LogEn-
hancer can dramatically reduce the set of potential root failure causes
when inspecting log messages. Liu et al. (2019) tackled the same
problem using, however, a customized deep learning network. Their
evaluation showed that the mean average precision of their approach
is over 84%.

Ding et al. proposed LoGenText (Ding et al., 2022), a NMT (Neural
Machine Translation) approach for improving the quality of log mes-
sages: By taking the code preceding a given log statement, LoGenText
can translate it into a short textual description that can be used for
logging. Such an approach can be considered complementary to the
one presented in our paper.
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Log placement. Other researchers targeted the suggestion of the
best code location for log statements (Jia et al., 2018; Li et al., 2018;
Li, 2020). For example, Zhu et al. (2015) presented LogAdvisor, an
pproach to recommend where to add log statements. The evaluation
f LogAdvisor on two Microsoft systems and two open-source projects
eported an accuracy of 60% when applied on pieces of code without
og statements. Yao et al. (2018) tackled the same problem in the
pecific context of monitoring the CPU usage of web-based systems,
howing that their approach helps developers when logging.

Li et al. (2020b) proposed a deep learning framework to recommend
ogging locations at the code block level. They report a 80% accuracy in
uggesting logging locations using within-project training, with slightly
orse results (67%) in a cross-project setting. Cândido et al. (2021) in-
estigated the effectiveness of log placement techniques in an industrial
ontext. Their findings (e.g., 79% of accuracy) show that models trained
n open source code can be effectively used in industry.
Log level recommendation. A third family of techniques focus on

ecommending the proper log level (e.g., error, warning, info) for a
iven log statement (Yuan et al., 2012a; Oliner et al., 2012). Mizouchi
t al. (2019) proposed PADLA as an extension for Apache Log4j frame-
ork to automatically change the log level for better record of runtime

nformation in case of anomalies. The DeepLV approach proposed by
i et al. (2021) uses instead a deep learning model to recommend the
evel of existing log statements in methods. DeepLV aggregates syntactic
nd semantic information of the source code and showed its superiority
ith respect to the state-of-the-art.

Lastly, in our previous work (Mastropaolo et al., 2022) we intro-
uced LANCE, a tool to inject complete log statements by automatically
electing a proper log level, log message and log location.

.3. Combining DL and IR to automate code related tasks

Although DL showed great potential in supporting various software
ngineering tasks (Watson et al., 2022), recent work showed how its
erformance can be further boosted by combining it with IR-based
echniques. Lam et al. (2017) proposed to use IR alongside DL for bug
ocalization. The IR technique assesses the textual similarity between
ug reports and code files. The DL model is then used to learn relation-
hips between terms in the two different vocabularies (i.e., bug reports
s. source code) and compute the final similarity score. The reported
esults show that DL and IR well-complement each other, with their
ombination outperforming the individual techniques used in isolation.
imilarly, Choetkiertikul et al. (2018) proposed to combine IR and DL
or identifying software components relevant for a given open issue.

Yu et al. (2022) combined DL with IR for the task of automated
ssertion generation. The idea is to use IR to retrieve the most similar
est method to the target one for which an assert statement must be
enerated. If the similarity between the retrieved method and the target
ne is higher than a threshold, the assert of the retrieved method is
eused. Otherwise, a DL-based approach is used to generate the assert.

In this work, we combine IR and DL to improve the performance of
og statement generation, especially for what concerns the definition of
meaningful log message.

. Conclusions and future work

We started by discussing the limitations of LANCE (Mastropaolo
t al., 2022), the approach we presented at ICSE’22 for the generation
f complete log statements. LANCE always assumes that a single log
tatement must be injected in a method provided as input. This is a
trong assumption considering that a method may not need logging or
ay need more than one log statement. Thus, we presented LEONID,

n extension of LANCE able to partially address these two limitations,
aking a further step ahead in the automation of logging activities.
lso, we experimented in LEONID a combination of DL and IR with the
oal of improving the generation of meaningful log messages achieving,
13
owever, only limited improvements over LANCE. In light of the
esults we have obtained, LEONID can ensure up to 27.27% correct
redictions, when asked to inject single log statement in Java methods.
n the other hand, when the model is requested to inject multiple

ogging statements, we observed that they were correctly added in
7% of the methods. In addition, LEONID is capable of differentiating
etween methods that necessitate additional log statements and those
hat do not, achieving an accuracy surpassing 0.95.

We are working on the implementation of LEONID as a tool to be
eployed to developers. This is the next step needed to perform in
ivo studies, thus better understanding the main weaknesses of current
L-based log generation.
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